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Rate of Escape from Nonattracting Chaotic Sets 
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Chaotic transient phenomena occur in the vicinity of nonattracting chaotic sets. 
The rate of escape measures the average length of the transients. There is a con- 
jecture by Eckmann and Ruelle connecting the rate of escape to the Lyapunov 
exponents and entropy. We prove an inequality that partially supports the 
conjecture. 
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1. I N T R O D U C T I O N  

Chaotic transient behavior is often observed in numerical or experimental 
studies of dynamical systems. This phenomenon is usually due to the 
presence of a nonattracting chaotic set. For almost every initial point near 
a nonattracting set, the orbit will sooner or later move away from the set 
and approach some attractor. However, if the set is chaotic, the orbits do 
not escape immediately. Some of them spend a sufficiently long time in the 
vicinity of the set before eventually getting out of it. Tracing such an orbit, 
one thus observes transient chaos. 

An interesting problem is to investigate the time period a typical orbit 
remains in the vicinity of the chaotic set, where it behaves chaotically. This 
leads to the study of the escape rate. (6"9" 12) For a fixed neighborhood U, the 
escape time T(x) of a point x is the maximum value n such that the orbit 
o f x  stays in U u p  to time n -  1. The escape time T(x) is infinity if the orbit 
never leaves 0. Let U, be the set of x with the property T(x)>1 n. The 
volume of U, decays roughly as an exponential function of n. The exponen- 
tial rate is called the rate o f  escape from U, or simply the escape rate. In 
general, a bigger escape rate means a shorter transient time. 
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A heuristic formula due to Kantz and Grassberger tg~ has been used in 
the literature, 17"3) which connects the escape rate with Lyapunov exponents 
and dimensions. The formula was reinterpreted by Eckmann and Ruelle tS~ 
and was shown to be rigorous in the case that the nonattracting set is 
uniformly hyperbolic. Then they went further to propose a conjecture that 
the formula should be true for nonhyperbolic sets as well. This paper is 
devoted to proving a partial result on nonhyperbolic sets which supports 
the conjecture. In the rest of this section we give a detailed review of the 
Kantz-Grassberger formula and the Eckmann-Ruelle conjecture. Let us 
begin with the well-understood uniformly hyperbolic case. 

Assume that f is a C 2 diffeomorphism on a compact manifold. Let A 
be an isolated and topologically transitive hyperbolic set. Also assume 
that A is not an attractor, that is, the stable manifolds do not fill a 
neighborhood of A. As a typical example in dimension 2, one may think of 
the Smale horseshoe. If U is a small neighborhood of A, set 

U.= {x: T(x)>~n} 
={x:f~x~U,i=O, 1 ..... n - l }  

where U~ = U. Use m to denote the volume on M. By ref. 2 the following 
limit exists: 

lim _ 1  log m(U.) 
n~oo n 

The limit, denoted by r(A), is independent of U and is given by 

- s u p  {h(p) - ~' positive 2i(/t): r(A) 

is an ergodic measure with support in A t ( 1 ) 

where h(p) is the entropy o f p  and the 2i(p) are the Lyapunov exponents. 
By an inequality of Ruelle (see ref. 5), h(/x)-Y~ positive ~.~(p)~<0. So 
r(A) >10. Writing in exponential form, we obtain 

m(U,) = e-"r" 

with lim . . . .  r,=r(A). Thus r(A) is the asymptotic rate of decay of the 
volume m(U,), that is, the escape rate. 

There exists a unique ergodic measure Po assuming the sup in (1),~21 
which is a so-called equilibrium state. The support of Po, supp(/Xo), is the 
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whole of A. Therefore, go is the natural measure which characterizes the 
transient chaos near A. If each exponent 2;(/~o) is of multiplicity mi, and 
the partial dimension of Po along the corresponding unstable manifolds is 
D,-, then by ref. 10 the entropy h(po) can be written as 

So from (1) 

h(/~o)= ~, Di2i(I.to) 
2i(,uo) > 0 

r(A)= --(h(po)-  ~ rni2i(Po)) 
~.i(ItO) > 0 

= ~ (mi--Di) 21(bto) (2) 
2i(po) > 0 

where the latter expression (2) is the renowned Kantz-Grassberger for- 
mula. 

As is known, chaotic transients are more often observed in the vicinity 
of nonattracting sets which are not uniformly hyperbolic, or whose hyper- 
bolicity is hard to check. As an example, we consider the H6non map with 
certain parameter values. Let the diffeomorphism f o n  R 2 be given by 

f(x, y) = (A -- x 2 + My, x) 

f is equivalent to the H6non map under the linear change of variables 
x=AX,  y=AY/M.  141 Choose parameters A =3.1 and M=0.3 .  There is a 
compact invariant set A contained in the square U =  ( - 3 ,  3 )x  ( - 3 ,  3) 
(Fig. 1 ). Almost every point in U leaves the region after a certain number 
of iterations. But the points sufficiently close to A exhibit long chaotic 
transients. The set A is fractal-like and apparently has one stable direction 
and one unstable direction. However, as far as we know, its uniform hyper- 
bolicity has not been established yet. In particular, these parameter values 
do not satisfy the condition in ref. 4 that A is a hyperbolic set. 

Therefore, it is important to study the rate of escape from nonattracting 
sets which are not hyperbolic. This question was stressed by Eckmann and 
Ruelle in their survey paper/5) Let A be a compact invariant set and/ t  o be 
an ergodic measure with support in A such that 

h(/to) - ~ positive 2,(po) 1> h(/t) - ~ positive 2;(#) (3) 

for all ergodic ~t in A. In view of the hyperbolic case we discussed before, 
it is not hard to understand the following conjecture. 
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Fig. 1. A chaotic compact invariant set of the map f(x, y) = (3.1 - x 2 +  0.3y, x) in the region 
[ -3 ,  3] x [ --3, 3]. The program Dynamics by J. A. Yorke is used to create the picture. 

C o n j e c t u r e .  (5) The rate of escape from A is given by 

r ( A ) =  - (h(po) - ~. positive 2,(po) ) (4) 

In other words, Po is a natural  measure that  describes the transient 
behavior  near  A. 

Our  main effort is to show that  if Po satisfies (3), then the rate of  
escape from any neighborhood U of A is no greater than - ( h ( p o ) - Y .  
positive 2i(po)). That  is, asymptotically,  m(U,,) is at least 

exp l n ( h(po) - ~. positive 2i(l~o) ) l 

This verifies half of  the Eckmann-Ruel le  conjecture. The rigorous results in 
this paper  will be restricted to the two-dimensional  case. In two dimensions 
the techniques and notat ions are much simpler, while the idea can easily be 
generalized to prove corresponding high-dimensional results. 

Although the complete proof  of  the Eckmann-Ruel le  conjecture is still 
missing, numerical and experimental  studies often show that  the right-hand 
side of (2) or (4) is a good approximat ion to the escape rate when there 
appears  to be an ergodic measure/ . t  o satisfying (3) and s u p p ( p o ) = A .  If  
such a natural  measure does not exist, however, the escape rate is possibly 
much smaller than - (h(p)-  ~ positive 2~(p)) for any p. For  instance, the 
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fractal basin boundaries provide an interesting class of examples which give 
rise to transient chaos. (6"~) But usually we have little knowledge of the 
existence of a natural ergodic measure, except when a basin boundary hap- 
pens to be hyperbolic (e.g., it is a hyperbolic Julia set). Therefore, in most 
cases a practical strategy would be as follows. First, check the existence of 
a natural measure by examining the experimental data. If the result is 
positive, then it is appropriate to apply formula (4). 

2. M A I N  R E S U L T S  

Let f :  M ~  M be a C 2 diffeomorphism on a compact surface M and 
let /~ be an ergodic probability measure. There are two numbers 
)~t(/.t) >~22(~) such that for/t-a.e, x 

lim 1 log II D,.f" II = A, ( ~ )  
n ~ o ' J  n 

and 

lim - -1  log IlDxf-"ll = 22(/t) 
n ~  oo n 

21(/t) and 22(lt ) are  called the Lyapunov  exponents  of lc  
There are a variety of equivalent definitions of the entropy h(/~). It is 

convenient for us to take the one from ref. 8. Denote by d(-, �9 ) the distance 
on the surface M and by B(x ,  r) the open ball at x with radius r. Let 

B, ( x ,  r) = { y: f i y  ~ B( fSx ,  r), i = O, 1,..., ,l - 1 } 

For r > 0 and d > 0, use N(n, r, ~) to denote the smallest number N such 
that one can find sets B,,(xj, r), j = 1 ..... N,  satisfying 

I~ B,,(xj,  r) >~1--~ 
1 

Then the entropy of/~ is given by 

h(/l) = lim lim inf 1 log N(n,  r, O) 
r - -~0  n ~ o o  /'/ 

This quantity is independent of 6. See the excellent survey in ref. 5 for more 
about the Lyapunov exponents and entropy. 
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The support of  a measure/ t ,  supp(p), is defined as the smallest closed 
set K with p(K) = 1. I f / z  is an invariant measure, then supp(/t) is an 
invariant set, namely, f ( s u p p ( p ) ) =  supp(/t). If  U is open and U ~  supp(p), 
set 

U,= {x : f i x e  U, i = 0 ,  I ..... n -  1} 

Denote by m the volume on M. (m is actually the area, since M is two 
dimensional.) The following theorem gives a bound for the rate of  escape 
from supp(p). 

Theorem 1. Assume 

2~(p) > 0 > 22(/~) 

Then for any U =  supp(p), 

lim inf 1 log m(U,) >1 h(lt) - 21(p) 
n ~  0 9  n 

(5) 

(6) 

Condit ion (6) means that such a measure p retains in its vicinity a 
volume of  no less than 

e , t ( h ( u  ) - 2~{i~} - e l  

by time n, where e > 0 can be arbitrarily small. The theorem will be proved 
in Section 3. 

Condit ion (5) is typically satisfied by a chaotic ergodic measure. Let us 
take a brief look at the other cases. If 0>21(p)~>22(p)  or 21(p)~> 
2 z ( p ) > 0 ,  then p is supported on a periodic orbit, supp(p) is not  chaotic 
and h(p)= 0. It is easy to calculate the corresponding escape rates: 

r(supp(p)) = 0 

in the first (attracting) case; and 

r(supp(g)) = 21(p) + 22(p) 

in the second (repelling) case. When p is degenerate, in the sense that one 
of  the Lyapunov exponents (or both of  them) is equal to zero, the entropy 
h(p) = 0 and supp(p) may or may not be a fractal set. The following can 
be shown: 

r(supp(p)) = 0 if 2,(~) = 0 >~ 22(p) 
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and 

l iminf l togm(U,)>~-21(/a)  if ~.1 (/ . t)/> 0 = ).2(,a) 
n ~ o o  17 

We do not write r(supp(/2)) in the latter case because, as in (6), the limit 
l im,_  oo usually does not exist. The proof of these two formulas will not be 
given in this paper, and is basically a slight modification of the proof in 
Section 3. 

The entropy h(/2) is often used as an indicator for the chaoticity of a 
measure/2. In this sense/2 is chaotic if and only if h(/2)> 0. It is well known 
(e.g., see ref. 10) that h(/2)>0 implies 21(/2 ) •0 > ~'2(/2)" Also from ref. 10 
we have 

h(/2) = Dn2,(/2) 

where D~ is the Hausdorff dimension of p on the unstable manifolds. Thus 
the right-hand side of (6) can be written as 

- ( 1  - D n )  21(/2) 

This form is favored by many authors. (9"7) 
In particular, if /2 is a Sinai-Bowen-Ruelle measure, ~2) i.e., /2 has 

absolutely continuous conditional measures on the one-dimensional 
unstable manifolds, then supp(/2) is a chaotic attractor. It is known that 
h(/2) = 2~(p) (Pesin's formula) and DI = 1. Condition (6) implies 

r(supp(/2)) = lim - -1  log m( U,,) = O 
n ~  cO n 

It is compatible with the attractive property of supp(/2). 
The following is an easy consequence of the theorem. 

Corollary 1. If A is a compact invariant set and U ~ A  is open, 
then 

lim inf I log m(U,,) 
n ~ ~ n 

>~ sup{h(/2) - )-1(/2):/2 ergodic, supp(/2) = A and (5) holds} (7) 

From the above discussion, the condition that (5) holds can be 
dropped. If  there happens to be an ergodic measure/ t  o with supp(/20)= A 
which achieves the sup in (7), then (7) becomes 

lim inf 1 log m(U,) >I h(/2o) - 2 l(Po) 
/ r 4  oo  n 

8 2 2 / 8 2 / 5 - 6 - 1 1  
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which confirms one side of the Eckmann-Ruelle conjecture. When A is not 
a hyperbolic set, however, it seems difficult to bound lim sup,_oo(l/n) 
log m(U,) from above by h(/to) and 21(/to), even if such a natural measure 
/t o exists. The beautiful formula (1) [or  (2)] for a hyperbolic A is largely 
due to the fact that the hyperbolicity can be uniformly extended to a 
neighborhood of A. So the dynamical quantities on A precisely reflect the 
dynamics in that neighborhood. In contrast, if A is not hyperbolic, the 
dynamics on A generally does not give a good control on any of its 
neighborhood, no matter how small. Therefore, the other half of the 
Eckmann-Ruelle conjecture is probably only true under proper modifica- 
tions. 

3. PROOF 

We prove the theorem in this section. Several lemmas are required. Let 
us first introduce the Lyapunov charts. 

Let / t  be an ergodic probability measure satisfying (5). For simplicity, 
write h, 21, and 2_, for h(/t), 21(p), and /~2(/t), respectively. There is a set 
F c  supp(/t) with/t(F) = 1, such that a family of coordinate changes can be 
constructed around the points x e F via which f becomes uniformly hyper- 
bolic. These coordinate changes are called the Lyapunov charts. We collect 
some facts that will be used later. See ref. 10 for details. 

Let R(r) be the square ( - r ,  r ) x ( - r ,  r) in R 2. For any given 0 <e  ,~ 
min{2~, 1221} there is a measurable function I :F--*[1 ,  oo) that varies 
slowly along orbits 

1 - e  <~ l(fi~c)/l(x) <~ I + e (8) 

The chart at x e F is a square R(el(x)- ~ ) together with an embedding 

t~,.: R(el(x) -1) ~ M 

satisfying the following properties: 

(i) aL(0) =x .  

(ii) For a constant K >  1 

K-ld(~, , .Yl ,  ~.,-Y2) ~< llyl -y211 <,Nl(x) d(~.,.y~, ~xY2) 

where II II is the Euclidean norm in R 2. 
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Rx Rfx 

Fig. 2. f ,  maps It onto graph(gt). 

Further,  iff.,. = ~ '  ofo ~x  is the induced map  between charts, then: 

(iii) We have 

Of,-10 = (Z'(0 x) xdO)) 

where ( 1 - e) e )'~ ~<Xi(x) ~< ( 1 + e) e )', i = 1, 2. 

(iv) IlOfxly,-Ofxly, ll <~l(x)IlY,-YzI[. 
Let us denote the chart  at x by R~, and write Rx = R~ x R~., where 

R~.= R~.= (-t~l(x) -1, ~l(x) - t )  are the coordinate axes in R x. The graph of 
a C t function g: R~.--* R~., denoted by graph(g) ,  is thus a smooth  curve in 
R,.. The following lemma shows how such a curve gets t ransformed by f.~. 

L e m m a  1. I fg:R~-- . ,R~.  is C * and ]g ' l~<l ,  then there is a con- 
nected piece 11 ~ g r a p h ( g )  such that  f,.(I~) is a graph of a C ~ function 
g~ : R~.,. ~ R~x with [g'j[ ~< 1 (see Fig. 2). 

The statement  has appeared in many  papers; e.g., see ref. 11, p. 124. 
It  results from the fact that  )7 x is expanding in the R~ direction and con- 
tracting in the R~. direction. 

We introduce some notations. I f y  e R.,., write y = (y", y~). Accordingly, 
f , . (y)  = 07~(y '', y ' ) ,  f ~ ( y " ,  y ) ) ,  and 

/ D'~"\  Tx=l;}il) 
I . e m m a  2. Assume g: R~--, R~'~ is C I and ]g'l <~ l. Then 

d ~r 
(1 -- ~kl(e)) e a' < ~zfx(Z,  g(z)) <~ (1 + ~kl(e)) e )q 

whenever (z, g(z))~ Ii, where 

~(e) = e + 2e/e )'' 
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Proof. 

By (iv), 

We have 

d ~  
--~zf~.(z, g(z) ) 

. ( 1 )  
= Df., .  I(=.,(_., g ' (z )  

_ - -  ( ) o,...,,o.o,( ) -- Df.,. l(o.o)) g'(z) g'(z) (Dfxl(=.,(=)) - ,  1 + - ,  I 

~ u  ~ u  
IIDf .,.l(=,g(=))- Of xlr ~ l(x) [l(z, g(z))l[ 

<~ /(~) . 4 G t ( ~ ) - '  = , f i e  

I g'l ~< 1 implies 

On the other hand, 

(<'~z,) -<~ 

~ ( 1 ) ( 1 ) 
Df"[(~176 g'(z) =(Zt(X), 0) g'(z) 

=Z,(x) 

where the first equation is from (iii). Using 

( 1 - e) e ~' ~Xl(X) ~< ( 1 + e) e;" 

and by (9), we have 

d -  
--~zf~(z, g(z)) ~< 2e + Z,(x) 

<~(1 +e+~a,)e ~' 

and 
d 
~z f~(z , g(z) ) >~ --2t +X,(x) 

~>(1 ~ 2e'~ - -~ )d - ,  ! 

Zhang 

(9) 
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Apply Lemma 1 repeatedly. After n iterations, a small piece of  curve 
1,, c graph(g)  is mapped by 

F::.= ff._,xo . . . .  .~.c. o f..~ 

onto graph(g , )  for some C ~ function 

g,,: R~. , . - .  R~., 

Let us calculate the length of  1',. 

I . e m m a  3. The arclength of  I,, satisfies the condition 

L(1',) >12el(x) - l  �9 (1 + O2(e))-" e - ' a '  

where 

~_,(e) = e + q, ,(e) + eq~,(e) 

Proof. 1', is the graph of  g over some interval (a, b ) c R I ' .  For  any 
z = z o e (a, b), denote 

- -  ~ t t  Zk+l--f~.,.(Zk, gk(zk)), k - 0 ,  1 ..... n - - 1  

( g 0 = g ) .  Then 

d , ,, " -  | d % 
-~z ( rx )  (z, g(z)) = I-[ -~zf~*.,.(Zk, gk(Zk)) 

k = O  Z 

~< (1 + ~l(e))" e 'a '  

where the inequality is by Lemma 2. Since 

f ;  ff--~ (F:)" (z, g(z) ) dz = 2e l ( f "x ) - '  

and 

we have 

l ( f"x)  ~</(x)(1 +e)"  

Obviously, L(1',)>1 b -  a; thus the lemma is proved. 

b - a  t> 2e/(x)-I  (1 + e ) - "  (1 + ~ l ( e ) ) - "  e -"a' 

= 2el(x) - j  (1 + ~2(e))-"  e -"a' 

I 
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By (ii), for any y e R  x, 

d(~,. y, x) ~<g [ [ y -  011 

< K x / ~ e l ( x ) - '  < V/-2Ke 

that is, 

Zhang 

~,.(R,.) = B(x, v/zge)  (10) 

l . e m m a  4. If x e F ,  then 

m(B.(x ,  ~/'2ge)) >>. 4e2l(x)-4 ( I + ~O2(e )) - "  e-";"  

Proof. By (10), B.(x,  ~/2Ke) ~ q~,.(B.(x, e)), where 

B,(x, e)--  { y e R,.: F~yeRfk , . ,  k =  1 ..... n -- 1} 

For  any v ~ R~]., let Jv be the line segment 

Jv = {(y", v): y " e ( - - e l ( x )  - l ,  el (x)- ] )}  

By Lemma3,  there is a small piece of J,, with length >12el(x) -1 
(1 + ff2(e))-" e -''~' that is contained in B,(x,  e). Integrating with respect to 
v over R x -  ( - e l ( x ) - 1 ,  el(x)-1), we obtain an area greater than or equal 
to 

2el(x) -1.2el(x)  - i  ( 1 + ff2(e)) - "  e - ' a l  

= 4e21(x)-2 (1 + ~b_,(e))-" e -"~' 

which is contained in B.(x, e). Applying (ii) yields 

m(B,,(x, x//}Ke)) >t l (x ) -2 .  {area of B,,(x, e)} 

>/4e21(x)-4 (1 +~12(e))-n e -n2' | 

Now we can complete the proof  of the theorem. Our technique is 
similar to that in ref. 2 or ref. 11. Suppose U contains an r-neighborhood 
of supp(/~). Choose e < r/~/2K. Then for any x e F, B,(x,  v / 2 K e ) c  U,. Let 
Ft = {x e 1-': l(x) <~ l}. Then lim/~ o~ F / = / 2  Fix l so large that IL(F/)/> 1/2. 
Thus if x ~ F1, 

m(B,,(x, ~/2Ke)) >t 4e21-4( 1 + ~b2(e)) - "  e -'a~ 
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Let {x /  j = l  ..... J} 
xjeFl, 

and 

Now, (12) gives 
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be a maximal (n, 2 ,v/2Ke)-separated set in F t, i.e., 

xjq~B,,(xf,2x/~ge) if j ~ j '  (11) 

J>~ N(n, 2 x/~Ke, �89 

But by (11 ), the sets {B,,(xj, x//2Ke): j = 1 ..... J} are disjoint. So 

(" ) m(U,,) >1 m U= B.(xj, x/~Ke) 
j l 

J 

= ~ m(B,,(xj, x/~Ke)) 
j = l  

>>- N(n, 2 x/~Ke, �89 4e2l-4(1 + 02(e))-" e - ' a '  

Therefore, 

lim inf 1 log m(U,) 
n l ~  n 

>~liminfl l~  ~ n (13) 

It is obvious from the definition of ~k, and 0,_ that 

lim 02(e)=0  

Taking e--* 0 in (13) and using the definition of entropy, we have 

l iminfl  logm(U,)>~h-2, I 
sl ~ oo n 

R e ma rk .  Our method can be easily generalized to prove a corre- 
sponding multidimensional result, where some of the Lyapunov exponents 
are allowed to be equal to zero. 

J 

U &,(xj, 2 v/~K~)= v, (12) 
j = l  
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